skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pedatella, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. A new version of the US National Science Foundation National Center forAtmospheric Research (NSF NCAR) thermosphere-ionosphere-electrodynamicsgeneral circulation model (TIEGCM) has been developed and released. Thispaper describes the changes and improvements of the new version 3.0since its last major release (2.0) in 2016. These include: 1) increasingthe model resolution in both the horizontal and vertical dimensions, aswell as the ionospheric dynamo solver; 2) upward extension of the modelupper boundary to enable more accurate simulations of the topsideionosphere and neutral density in the lower exosphere; 3) improvedparameterization for thermal electron heating rate; 4) resolvingtransport of minor species N(2D); 5) treating helium as a major species;6) parameterization for additional physical processes, such as SAPS andelectrojet turbulent heating; 7) including parallel ion drag in theneutral momentum equation; 8) nudging of prognostic fields near thelower boundary from external data; 9) modification to the NO reactionrate and auroral heating rate; 10) outputs of diagnostic analysis termsof the equations; 11) new functionalities enabling model simulations ofcertain recurrent phenomena, such as solar flares and eclipse. Wepresent examples of the model validation during a moderate storm andcompare simulation results by turning on/off new functionalities todemonstrate the related new model capabilities. Furthermore, the modelis upgraded to comply with the new computer software environment at NSFNCAR for easy installation and run setup and with new visualizationtools. Finally, the model limitations and future development plans arediscussed. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026
  3. Using the high-rate phase and amplitude scintillation data from FORMOSA7/COSMIC two mission and back-propagation method, we geolocate plasma irregularities that cause scintillations. The results of geolocation are compared with the NASA GOLD UV image data of plasma bubbles. The root mean square of the zonal difference between estimated locations of plasma irregularities and plasma bubbles are about 1.5° and for single intersection cases 0.5° in the magnetic longitude. The geolocation data provide more accurate scintillation location around the globe compared to assigning to the tangent point and is valuable space weather product, which will be routinely available for public use. 
    more » « less
  4. This study explores the meteorological source and vertical propagation of gravity waves (GWs) that drive daytime traveling ionospheric disturbances (TIDs), using the specified dynamics version of the SD-WACCM-X (Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension) and the SAMI3 (Sami3 is Also a Model of the Ionosphere) simulations driven by SD-WACCM-X neutral wind and composition. A cold weather front moved over the northern-central USA (90–100°W, 35–45°N) during the daytime of 20 October 2020, with strong upward airflow. GWs with ~500–700 km horizontal wavelengths propagated southward and northward in the thermosphere over the north-central USA. Also, the perturbations were coherent from the surface to the thermosphere; therefore, the GWs were likely generated by vertical acceleration associated with the cold front over Minnesota and South Dakota. The convectively generated GWs had almost infinite vertical wavelength below ~100 km due to being evanescent. This implies that the GWs tunneled through their evanescent region in the middle atmosphere (where a squared vertical wavenumber is equal to or smaller than 0) and became freely propagating in the thermosphere and ionosphere. Medium-scale TIDs (MSTIDs) also propagated southward with the GWs, suggesting that the convectively generated GWs created MSTIDs. 
    more » « less
  5. Abstract The Global‐scale Observations of Limb and Disk (GOLD) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instruments were used to investigate the thermospheric composition and temperature responses to the geomagnetic storm on 23–24 April, 2023. Global‐scale Observations of Limb and Disk observed a faster recovery of thermospheric column density ratio of O to N2(ΣO/N2) in the southern hemisphere (SH) after the storm ended at 12 Universal time (UT) on 24 April. After 12 UT on 25 April, ΣO/N2had mostly recovered in both hemispheres. Global‐scale Observations of Limb and Disk also observed an increase of middle thermospheric temperature (140–200 km) (Tdisk) on 24 April with a maximum of 340 K. Within 4–6 hr of the storm ending on 24 April, Tdisk enhancement persisted between 30°N and 60°N, 100°W and 30°W, while Tdisk lower than pre‐storm quiet day (17 April) was observed between 45°W and 15°W, 40°S and 50°N. Tdisk recovered between 100°W and 45°W, 30°N and 55°S. On 25 April, Tdisk was lower than on 17 April across the entire GOLD Field‐of‐Regard (FOR) by ∼50–110 K. Additionally, solar irradiance decreased by 15%–20% from 17 to 25 April, indicating that the lower Tdisk on 25 April resulted from both storm and solar irradiance variations. Latitudinal variations of Tdisk and the SABER observed Nitric Oxide (NO) cooling rate revealed that NO cooling is crucial for the lower Tdisk in the northern hemisphere (NH) mid‐high latitudes on 25 April. These results provide direct evidence of decreased thermospheric temperature during storm recovery phase than pre‐storm quiet times. 
    more » « less
  6. Abstract On 3 February 2022, at 18:13 UTC, SpaceX launched and a short time later deployed 49 Starlink satellites at an orbit altitude between 210 and 320 km. The satellites were meant to be further raised to 550 km. However, the deployment took place during the main phase of a moderate geomagnetic storm, and another moderate storm occurred on the next day. The resulting increase in atmospheric drag led to 38 out of the 49 satellites reentering the atmosphere in the following days. In this work, we use both observations and simulations to perform a detailed investigation of the thermospheric conditions during this storm. Observations at higher altitudes, by Swarm‐A (∼438 km, 09/21 Local Time [LT]) and the Gravity Recovery and Climate Experiment Follow‐On (∼505 km, 06/18 LT) missions show that during the main phase of the storms the neutral mass density increased by 110% and 120%, respectively. The storm‐time enhancement extended to middle and low latitudes and was stronger in the northern hemisphere. To further investigate the thermospheric variations, we used six empirical and first‐principle numerical models. We found the models captured the upper and lower thermosphere changes, however, their simulated density enhancements differ by up to 70%. Further, the models showed that at the low orbital altitudes of the Starlink satellites (i.e., 200–300 km) the global averaged storm‐time density enhancement reached up to ∼35%–60%. Although such storm effects are far from the largest, they seem to be responsible for the reentry of the 38 satellites. 
    more » « less
  7. Variability in the ionosphere during the 2020–2021 sudden stratospheric warming (SSW) is investigated using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) observations and the Whole Atmosphere Community Climate Model with thermosphere–ionosphere eXtension (WACCM-X) simulations. The unprecedented spatial–temporal sampling of the low latitude ionosphere afforded by COSMIC-2 enables investigating the short-term (<5 days) variability in the ionosphere during the SSW event. The COSMIC-2 observations reveal a reduction in the diurnal and zonal mean ionosphere total electron content (ITEC) and reduced amplitude of the diurnal variation in the ionosphere during the SSW. Enhanced ITEC amplitudes of the semidiurnal solar and lunar migrating tides and the westward propagating semidiurnal tide with zonal wavenumber 3 are also observed. The WACCM-X simulations demonstrate that these variations are driven by variability in the stratosphere–mesosphere during the 2020–2021 SSW event. The results show the impact of the 2020–2021 SSW on the mean state, diurnal, and semidiurnal variations in the ionosphere, as well as the capabilities of the COSMIC-2 mission to observe short-term variability in the ionosphere that is driven by meteorological variability in the lower atmosphere. 
    more » « less
  8. The mesospheric polar vortex (MPV) plays a critical role in coupling the atmosphere-ionosphere system, so its accurate simulation is imperative for robust predictions of the thermosphere and ionosphere. While the stratospheric polar vortex is widely understood and characterized, the mesospheric polar vortex is much less well-known and observed, a short-coming that must be addressed to improve predictability of the ionosphere. The winter MPV facilitates top-down coupling via the communication of high energy particle precipitation effects from the thermosphere down to the stratosphere, though the details of this mechanism are poorly understood. Coupling from the bottom-up involves gravity waves (GWs), planetary waves (PWs), and tidal interactions that are distinctly different and important during weak vs. strong vortex states, and yet remain poorly understood as well. Moreover, generation and modulation of GWs by the large wind shears at the vortex edge contribute to the generation of traveling atmospheric disturbances and traveling ionospheric disturbances. Unfortunately, representation of the MPV is generally not accurate in state-of-the-art general circulation models, even when compared to the limited observational data available. Models substantially underestimate eastward momentum at the top of the MPV, which limits the ability to predict upward effects in the thermosphere. The zonal wind bias responsible for this missing momentum in models has been attributed to deficiencies in the treatment of GWs and to an inaccurate representation of the high-latitude dynamics. In the coming decade, simulations of the MPV must be improved. 
    more » « less